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ABSTRACT

Unstructured mesh adaptation has already revealed very efficient for computing an accurate solution in a
reasonnable amount of time on current PC architectures. Two features are still missing in the adaptation
scheme: (i) the creation of arbitrary anisotropic meshes and (ii) the capture of transient phenomena. There-
fore, in this paper, we propose a global scheme suitable to compute steady-state as well as transient problems,
based on anisotropic mesh adaptation. Several examples of numerical simulations in CFD are provided to
emphasize the efficiency of the proposed approach.
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INTRODUCTION

Nowadays, in the context of numerical simu-
lations, unstructured mesh adaptation is unan-
imously recognized as an efficient and clever
method for improving the accuracy of the solution
as well as for capturing the behavior of physical
phenomena, even if it is not known a priori. More-
over, reducing the number of nodes (the number of
degrees of freedom) allows to substantially reduce
the CPU time. Hence, three-dimensional complex
simulations are now commonly used in many en-
gineering fields ! It becomes even possible to com-
pute large unsteady simulations on current work-
stations (no parallel architecture required) almost
on a daily basis. A missing piece on the simulation
checkboard remained the anisotropic adaptation
for unsteady phenomena. This paper attempts to
bridge this gap.

Problem statement

As pointed out, mesh adaptation is now widely
used in complex three-dimensional numerical sim-

ulations, especially in CFD. The aim of mesh
adaptation is to control the generation of a new
mesh in a computational scheme, such that the
computational error (the approximation error) es-
timated on this mesh is bounded by a given thresh-
old value. If we consider that the approximation
error is bounded by the interpolation error, the
problems turns to generate a new mesh on which
the interpolation error is equidistributed.

Here, we attempt to glue various software pieces
together, in order to build a fully automatic
anisotropic mesh adaptation scheme suitable for
unsteady problems. This challenging application
is based on the definition of a geometric error es-
timate of the interpolation error, on the construc-
tion of a proper discrete metric tensor and on gov-
erned anisotropic surface and volume meshing al-
gorithms. All these pieces have one feature in
common: they all involve an anisotropic metric.
Anisotropic mesh generators require a metric to
be defined at the mesh vertices in order to create
adapted meshes. The discrete metric is defined at
the mesh vertices in order to account for the varia-
tions of (possibly all) the variables of the problem.



So, the error estimate has to relate the interpola-
tion (or approximation) error to element sizes and
directions, using a . . .metric. It turns out that
defining a suitable metric is the key to success in
mesh adaptation.

Related work

Over the last few years, a rather large number
of papers have been published on mesh adapta-
tion for numerical simulations (see [14] for a sur-
vey). However, only a few number of papers
have addressed the problem of constructing three-
dimensional anisotropic meshes. Actually, most of
these papers mainly suggested to modify the point
insertion procedure, common to all meshing algo-
rithms, to account for boundary layers (i.e., close
to the boundaries). Although some of these al-
gorithms may be useful in such circumstances, all
of them usually lack the kind of generality (or au-
tomation) required to capture, for instance, shocks
waves in the regions away from the domain bound-
aries. Indeed, fully automatic tools are still cru-
cially required in the context of mesh generation
and error estimation. Once available, such tools
would greatly facilitate the design and implemen-
tation of an automatic adaptation scheme, for any
type of numerical simulation (the solver would be
the only application dependent software piece).

Paper outline

In this paper, we briefly introduce an a posteri-
ori geometric error estimate based on a discrete
approximation of the second derivates of the vari-
ables of the problem that will be used to define a
suitable metric for mesh adaptation, Section 1. In
Section 2, we recall the main stages of the mesh
adaptation scheme, i.e., surface and volume gov-
erned mesh generation. In Section 3, we present a
new adaptation scheme based on a transient fixed
point algorithm suitable for transient problems.
Finally, in Section 4, three application examples of
mesh adaptation are provided to illustrate the pro-
posed approach, in the isotropic and anisotropic
case.

1. METRIC RELATED ISSUES

In many engineering applications, it is often desir-
able to create adapted meshes presenting highly
anisotropic features (stretched elements in arbi-
trary directions). This challenging problem can
be (easily) resumed to that of constructing appro-
priate metric tensors in order to govern the mesh-

ing algorithms. The key idea is thus to define a
convenient metric tensor (via a suitable error es-
timate) based on the discrete variables (solutions)
of the problem. Such a discrete metric can be used
to create unit meshes as will be seen in the next
Section.

In this Section, we will first introduce the main
principle of a geometric error estimate of the in-
terpolation error. Then, we will explain how to
construct a metric tensor for mesh adaptation.

1.1 A geometric error estimate

As the finite element solution ui is not interpolant
and as it is not possible to guarantee that ui coin-
cide with the exact solution u in at least one point
of each element, it seems rather difficult to quan-
tify the gap ei = u−ui. However, it is possible to
use an indirect approach to measure this gap [1].
For elliptic problems, it has been proved (Céa’s
lemma, [12]) that the FE error is bounded by the
interpolation error ei: ‖ei‖ ≤ C ‖u−Πhui‖, where
Πhui is the interpolation of u on the mesh Hi, ‖ . ‖
is a norm of IR3 and C a constant independent of
the current meshHi. We assume that this relation
still holds in the class of problems described here.
Actually, studies based on the interpolation error
show (practically) that the link between the inter-
polation error and the approximation error is even
stronger than the bound given by Céa’s lemma.
Hence, the interpolation error leads to a ”good”
error estimate [14]. The problem is to charac-
terize the mesh on which the interpolation error
is bounded by a given tolerance value or equidis-
tributed.

It has been proved that the analysis of a “mea-
sure” of the interpolation error leads to define an
anisotropic metric map which prescribes element
sizes and directions [7]. To measure the interpo-
lation error, we consider the discrete L∞ norm of
the error defined in tetrahedron K as:

‖u−Πhu‖∞,K ≤ cmax
x∈K

max
~e∈EK

〈~e, |Hu(x)|~e〉 , (1)

where c is a constant dependent of the dimension,
EK is the set of element edges of K and |Hu| is
the absolute value of the Hessian of the variable u
(symmetric definite positive tensor). As the Hes-
sian matrix is symmetric, it can be decomposed
as: Hu = RΛR−1 where R is the eigenvector ma-
trix and Λ = diag(λi) is the eigenvalue matrix,
the absolute value of the Hessian matrix is then



defined as follows:

|Hu| = R |Λ|R−1 with |Λ| = diag(|λi|) .

Notice that this error is related to the Hessian of
the variable u and to the mesh edges, hence it
provides directional thus anisotropic information.
Controlling the mesh edges allows to control the
interpolation error on the mesh elements.

From a practical point of view, the right-hand side
term of Equation (1) is not useful as it involves the
maximum of the metric field |Hu| that is usually
not known. Nevertheless, it is possible to define a
suitable metric tensor M̃(K) such that the inter-
polation error on a mesh element is given by:

εK = c max
~e∈EK

〈~e,M̃(K)~e〉 .

In the mesh adaptation context, the error toler-
ance ε that must be equidistributed over the mesh
is fixed and the mesh element have to be char-
acterized via this constraint. For a given mesh
element K, we define the metric tensor M(K) =
cε−1M̃(K), and all mesh edges must comply with
the following equality:

〈~e,M(K)~e〉 = 1 . (2)

A mesh for which all edges comply with this rela-
tionship is a so-called unit mesh.

In other words, to equidistribute the interpolation
error over the mesh, we have modified the scalar
product that lies under the notion of distance used
in mesh generation algorithms, based on the local
metricM that replace the usual Euclidean metric.
This tensorMmust still be defined more precisely.

The specificity of this error estimate is related to
the following features:

• the analysis is not asympotical, (h does not
tend towards zero),

• it is based on the hessian of the solution,

• it is intrinsically anisotropic

• it does not depend of the nature of the oper-
ator (therefore it can be used for any type of
equation).

Remark 1.1. This error estimate is called ”geo-
metric” as the solution on a mesh can be seen as a
Cartesian surface and we attempt to define a ge-
ometric metric in order to control the gap to the
surface.

1.2 Metric construction

Let us denote by hmin (resp. hmax) the minimal
(resp. maximal) mesh element size. According to
the previous section, we define the metric tensor
as: M = RΛ̃R−1, with:

λ̃i = min
(

max
(

c|λi|
ε

,
1

h2
max

)
,

1
h2

min

)
.

Introducing a minimal (resp. maximal) element
size is a way of avoiding irrealistic (unpracticable)
metrics. It also allows in a computational (ex-
plicit) scheme to control the time step.

The Equation (1) leads to a global upper bound
of the interpolation error. However, in order to
combine various variables, each of them having a
different meaning or a different nature, it becomes
necessary to introduce a relative bound on the in-
terpolation error, to have dimensionless variables,
as follows:

‖u−Πhu‖∞,K

‖u‖∞,Ω
≤ cmax

x∈K
max
~e∈EK

〈~e, |Hu(x)|~e〉
‖u‖∞,Ω

.

Then, all metrics can be combined together into
a single metric tensor using a metric intersection
scheme.

Moreover, in numerical simulations, solutions vary
from several orders of magnitude (multi-scale phe-
nomena, recirculations, shocks, etc.). It is thus dif-
ficult to capture the weakest phenomena via mesh
adaptation, and even harder to do it when, for in-
stance in CFD, shocks are located in the flow. A
local error estimation can overcome this problem.
Following the previous idea, the error estimate is
also normalized using the local value of the gradi-
ent norm of the variable u, weak phenomena can
be captured even in presence of strong shocks. To
this end, we introduce the following estimate:

∥∥∥∥ u−Πhu

|u|+ h̄‖∇u‖2

∥∥∥∥
∞,K

≤

c max
x∈K

max
~e∈EK

〈~e, |Hu(x)|
|u|+ h̄‖∇u‖2

~e〉 ,



where h̄ is the diameter of the element (its largest
edge) in the background mesh (at the previous it-
eration).

1.3 Metric intersection

When several metrics are specified at the same ver-
tex, a unique metric tensor must be defined taking
into account all given metrics. To this end, a met-
ric intersection procedure is used. Let M1 and
M2 be two metric tensors given at a vertex P .
The metric tensor M1∩2 corresponding to the in-
tersection of M1 and M2 must be such that the
interpolation error for each variable is bounded by
the given tolerance value. To this end, we use the
simultaneous reduction of the quadratic forms as-
sociated with the two metrics [1] (cf. Figure 1).

The two metric tensors are represented by the as-
sociated ellipsoids EMi . The ellipsoid EM of max-
imal volume included in the (geometric) intersec-
tion of these two ellipsoids defines the desired met-
ric tensor. Formally speaking, let us consider

Md = {M |M metric tensor}

be the set of all metric tensors in IRd and let us
define the ellipsoid associated with the metric M
by:

EM = {M |
√

t
−−→
PM M

−−→
PM = 1} .

Hence, the metric M1∩2 is defined by the ellipsoid
EM1∩2 = sup

Mi∈Md

EMi
⊂ EM1 ∩ EM2 or:

sup
Mi∈Md


M |

q
t
−−→
PMMi

−−→
PM = 1

ff
⊂ EM1 ∩ EM2 ,

where the sup over the set of metrics represents
the metric with the largest volume of its associated
ellipsoid.

2. MESH ADAPTATION

As mentioned in the Introduction, the generation
of an adapted mesh is based on the specification of
a discrete anisotropic metric tensor at each mesh
vertex of the current mesh. The aim is then to
compute the edge lengths with respect to this met-
ric. For the sake of simplicity, it is possible to de-
fine the metric tensor so as to prescribe a unit edge
length. The standard Euclidean scalar product is

Figure 1. Metric intersection in three dimensions.

then modified using a proper metric tensor field.
At each vertex, a different expression of the met-
ric M leads to a different expression of the scalar
product. Let P be a vertex and let M(P ) be the
metric at P . The desired edge PX must have a
length close to one w/r M(P ):

lM(P )(
−−→
PX) =

√
t
−−→
PXM(P )

−−→
PX = 1 .

As the metric varies in the domain (is not constant
in an element), we need to consider the metrics
at the edge endpoints as well as all intermediate
metrics along the edge. To this end, we introduce
the average length of PX as:

lM(
−−→
PX) =

1∫
0

√
t
−−→
PXM(P + t

−−→
PX)

−−→
PX = 1 . (3)

The desired adapted mesh is then a unit mesh, i.e.,
a mesh such that for each edge ~e ∈ EK , lM(~e) ≈ 1.

In our approach, the generation of adapted meshes
is a two-steps process. At first the surface mesh
is adapted using local modifications [16], then
the volume mesh is adapted using a constrained
Delaunay algorithm extended to the anisotropic
case [19]. Notice that most of the vertices of the
previous meshes are kept in order to reduce er-
rors (as much as possible) when interpolating the
solutions from one mesh to the other.

2.1 Surface mesh adaptation

Given a discrete surface (a piecewise linear approx-
imation of the domain boundaries) and a discrete



metric field, the aim is to generate an adapted
mesh with respect to this metric. To this end, the
approach we use consists in modifying iteratively
the initial surface mesh so as to complete a unit
mesh. Obviously, as the mesh is intended for FE
computations, the mesh gradation is also a ma-
jor concern. The ingredients to achieve this goal
typically include mesh enrichment, mesh coarsen-
ing ans local mesh optimization procedures. The
local mesh modifications operators involved are:
edge flipping, edge collapsing, edge splitting and
node removal, node repositioning and degree re-
laxation.

As no CAD information is provided, an internal
(at least) C1 continuous geometric support is first
constructed, using local quadrics (defined at the
mesh vertices). Then, a geometric metric tensor
G is defined at the mesh vertices using this sup-
port, the local principal curvatures and directions
are computed. This geometric metric G has to be
intersected with the computational metric M so
as to cope at best with these two requirements. In
turn, this metric G ∩M must be modified to ac-
count for the desired mesh gradation [10]. The re-
sulting metric M̃ is used to govern all mesh mod-
ifications.

The surface mesh modification algorithm is pretty
straightforward, edge lengths are computed with
respect to the metric M̃ and edge too small are
collapsed while edge too long are splitted into unit
length segments. Edge flips and node reposition-
ing operations are performed to improve the over-
all mesh quality (in terms of shape and size) [17].

2.2 Volume mesh adaptation

Once the surface mesh has been adapted, a unit
volume mesh is generated with respect to the mod-
ified metric M̃. In our approach a constrained De-
launay procedure is used to build first an empty
mesh (with no internal vertices). Then, based
on an edge length analysis, internal nodes are
added into the current mesh (most of them coming
from the background mesh, at the previous itera-
tion) using the Delaunay kernel, extended to the
anisotropic case [19].

As pointed out, the classical distance evaluation
is replaced using an evaluation related to the lo-
cal anisotropic metric. Hence, let A and B be two
points, the distance between A and B, d(A,B)
is now replaced by lM(A,B) as defined by Equa-
tion (3). Then, OK (the circumcenter of a tetra-

hedron) is computed as the solution of the system:

lM(OK , Pi) = lM(OK , Pj) ∀i, j = 1, 4, i 6= j ,

and rK , the circumradius of K, is computed as:

rK = lM(OK , Pj) .

Finally, the Delaunay measure:

αM(P,K) =
lM(OK , P )
lM(OK , Pj)

< 1 ,

where αM(P,K) is used to define the cavity of K.

However, as we face a nonlinear system to com-
pute OK and as the metric is discrete, it is then
not so easy to compute the desired length. There-
fore, approximations are needed to return to the
Euclidean context. To this end, we fix the metric
and various approximations can be used.

2.3 Unsteady adaptation scheme

The classical adaptation algorithm is usually com-
posed of four successive steps: (i) solution compu-
tation, (ii) error estimation and metric construc-
tion, (iii) governed mesh adaptation and (iv) in-
terpolation of the solutions. However, this ap-
proach has been proved to be inadapted when
dealing with transient (time-dependent) prob-
lems [2], mainly because of the impossibility to
predict the behavior or the evolution of such phe-
nomena. For stationnary problems, mesh adap-
tation aims to find a fixed point for the couple
mesh-solution. The objective is to converge to-
wards both the stationnary solution of the prob-
lem and the adapted mesh (that equidistribute the
interpolation error). In such context, the mesh is
always ”late” with respect to the phenomenon and
thus, if the number of adaptations is too small,
the solution is diffused. Moreover, the adaptation
introduce a quite large error due to the interpo-
lation of the solution from one mesh (the back-
ground mesh) to the other, that impacts the time
derivatives and thus introduce an error in phase.
To overcome these problems, we have proposed
an extension of the classical adaptation scheme,
specifically intended for transient problems [2].

The transient fixed point algorithm is composed of
two steps, the main adaptation loop and an inter-
nal loop in which the transient fixed point problem



is solved (Fig. 5). At each iteration of the main
loop, we consider a time period [t, t+∆t] in which
the solution evolves. From the solution at time t,
we compute the solution to time t + ∆t, and the
computation is iterated until the desired accuracy
is obtained for the solution at t + ∆t. Hence, the
solution behavior is predicted in all regions of the
domain where it evolves. A metric intersection
procedure in time is introduced to adapt the mesh
in these regions.

To generate an adapted mesh in the region where
the solution advances in time, the metric must re-
flect this evolution. To this end, the metric must
take into account the information given by the ini-
tial solution, the final solution and all intermediate
solutions. Therefore, all metrics are intersected
and the metric tensor at iteration i and the inter-
nal loop j is defined as:

Mi,j =
m⋂

k=1

Mk
i,j ,

where Mk
i,j is the kth intermediate metric given

by the solution.

3. APPLICATION EXAMPLES

In this section, we present three examples of un-
structured mesh adaptation intended to illustrate
the various problems described previously. The
first example aims at showing anisotropic surface
and volume mesh adaptation for an analytical
metric specification. The second example will fo-
cuss on the error estimate for a steady-state Euler
computation in two dimensions. Finally, the third
example deals with a transient CFD problem on a
complex geometry in three dimensions.

3.1 A "not-so-simple" analytical example

In this example, we will show the behavior of the
anisotropic adaptation meshing procedure on an
analytical function and, more precisely, the metric
intersection algorithm. Let us consider the surface
in IR3 defined on [−1, 1]3 :

f1(x, y, z) = tanh
(
(x + 1.3)20 (y − 0.3)9 z

)
,

the computational domain is a supertorus defined
by the set of equations:

{
x = cosn1(θ) (r0 + r1 cosn2(φ)) ,
y = sinn1(θ) (r0 + r1 cosn2(φ)) ,
z = (r0 + r1) sinn2(φ) ,

where θ and φ vary in [0, 2 π] and r0 + r1 (resp.
r0 − r1) represents the external (resp. internal)
radius of the torus (here n1 = n2 = 0.2).

The specificity of this case is that it combines two
different metric fields, the first one defined by the
function f1, the second one related to the geom-
etry of the domain (the intrinsic surface proper-
ties). Here, the surface meshing algorithm pro-
ceeds by first analysing the surface given an ini-
tial (crude) surface triangulation (Fig. 2) in order
to construct the geometric metric tensor1. The
number of adaptations has been set a priori to
8, the desired error bound is ε = 0.0084. The
Hessian of the variable (the surface curvature or
the function) is computed a least-squares approx-
imation [16]. Table 1 reports statistics about the
initial triangulation and the sequence of adapted
meshes, np, ne, nf representing the number of
vertices, tetrahedra and triangles, respectively, ε̃
and εmax represent the average and maximal er-
ror measured on the elements.

The distance to the hypersurface is computed on
each tetrahedron K by considering the maximal
value of the distances between the edge midpoints,
the face midpoints and the barycenter of K. The
average (resp. maximal) value of the error should
be close to the desired error ε on the final adapted
mesh, thus validating the proposed error estimate.

It np ne nf ε̃ εmax

0 3, 850 15, 460 4, 884 0.0438 1.0000

2 72, 090 416, 124 14, 548 0.0064 0.5673

4 29, 651 154, 763 17, 076 0.0047 0.0555

5 22, 782 114, 637 16, 190 0.0051 0.0454

8 21 063 105 268 15 474 0.0051 0.0345

Table 1. Statistics about the adapted meshes at itera-
tions 0 (initial), 2, 4, 5 and 8 (final) for the analytical
example.

1Needless to say that the analytical function is not used

to get the first and second derivatives of the surface at

the mesh vertices, discrete approximations are computed

instead [16].



Remark. In this example, in the final adapta-
tion, 99.6 % of the elements have an error be-
low the given tolerance ε and the average error
ε̃ = 0.0051 is lesser than ε. Moreover, the max-
imal error εmax is constantly decreasing over the
iterations.

3.2 A 2D steady-state problem

This example related to a Euler computation at
Mach 3 in a scramjet configuration is typical of nu-
merical simulations in compressible fluids, involv-
ing highly anisotropic phenomena (shocks). The
aim is to capture the behavior of the physical phe-
nomenon and to emphasize the reduction of the
number of degrees of freedom obtained thanks to
the anisotropy [9]. The geometry of the computa-
tional domain is shown in Fig. 6.

Two series of mesh adaptation have been carried
out on this example, isotropic and anisotropic, to
be compared. However, the parameters were the
same for both computations : 9 adaptations have
been performed, each 400 time steps of the Euler
solver. The density variable has been chosen to
adapt the meshes with the following parameters:
ε = 0.02, hmin = 0.01 m and hmax = 2 m.

The cartesian surface associated to the density
presents a series of steps (shocks) in the domain.
The error estimate analyses this surface in IR3

and provide a 2D anisotropic metric, the desired
unit mesh is thus a mesh adapted to this underly-
ing surface. Table 2 reports statistics about the
anisotropic and isotropic adapted meshes. Fig-
ure 6 compares the initial and adapted meshes (at
iterations 2 and 9) with the corresponding isoden-
sity distributions. The anisotropic final mesh con-
tains more than 5 times less vertices than the final
isotropic mesh. Accordingly, the anisotropic ap-
proach required 14mn (on a PC workstation) vs.
2h13mn for the isotropic approach, thus reducing
the time by a impressive factor of 9. Moreover, by
stretching the elements along the discontinuities,
the numerical diffusion due to the Riemann solver
has been significantly reduced (Fig. 8).
Remark 3.1. The same test case was already pro-
posed a few years ago. However, the anisotropic
mesh adaptation was giving nearly isotropic ele-
ments along the shock waves [9]. The result is
now improved using the geometric error estimate
described in Section 1.

3.3 A 3D transient CFD problem

Finally, the last example will demonstrate the effi-
ciency of the transient adaptation procedure, on a

It npa nea npi nei

0 8, 012 15, 275 8, 012 15, 275

2 5, 783 11, 055 76, 565 151, 558

5 9, 292 17, 983 75, 997 150, 532

9 15, 110 29, 569 78, 702 155, 951

Table 2. Statistics about the initial and adapted
meshes for the anisotropic and isotropic cases on the
scramjet configuration.

isotropic example2. The problem concerns a non
linear wave propagation in a complex 3D geom-
etry. This simulation can be seen as a general-
isation of the Riemann problem (a shock tube)
in higher dimension. More precisely, a Heavyside
perturbation is introduced into a uniform field so
as to simulate an explosion (a region of high pres-
sure is introduced into the ambient atmosphere).
The flow is approached using Euler equations in
the conservative forms. A finite volume (for the
flow computation) solver is used. Euler equations
are solved using an explicit scheme, a four order
Runge-Kutta is used for time integration.

In this example, the objective is to compute the
solution at physical time t = 0.1 sec.The sim-
ulation is decomposed into 30 periods (adapta-
tions). At each main iteration, 4 internal itera-
tions are performed to solve the transient fixed
point problem. The metric is defined based on
the density variations. The adaptation parame-
ters have been set to: ε = 0.01, hmin = 0.3m.,
hmax = 10m., for a computational domain size of
85m×85m×70m. Table 3 reports statistics about
the adapted (isotropic) meshes. Adapted meshes
are presented in Figures 9 to 13.

It. t np ne nf

8 0.027 280, 525 1, 630, 619 40, 736

15 0.05 603, 644 3, 541, 268 63, 526

23 0.077 739, 854 4, 326, 861 78, 816

30 0.1 743, 735 4, 328, 741 87, 322

Table 3. Statistics about the adapted meshes for the
transient problem.

2Anisotropy is expected soon in 3D.



4. CONCLUSIONS

In this paper, we have presented a global scheme
for mesh adaptation in the context of numerical
simulations. The proposed approach involves an
anisotropic geometric error estimate, surface and
volume mesh adaptation algorithms based on dis-
crete metric tensors. It differs from the classical
adaptation scheme by integrating a inner loop cor-
responding to a transient fixed point algorithm.
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des problèmes instationnaires, C.R. Acad.
Sci., Paris, t 336, Série I.

[3] E.F. D’Azevedo and B. Simpson (1991),
On optimal triangular meshes for minimiz-
ing the gradient error, Numerische Mathe-
matik, 59(4), 321-348.
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Numériques, Hermès Science, Paris.

[12] P.G. Ciarlet (1991), Basic Error Esti-
mates for Elliptic Problems, in Handbook of
Numerical Analysis, vol II, Finite Element
methods (Part 1), P.G. Ciarlet and J.L. Li-
ons Eds, North Holland, 17-352.

[13] H.L. deCougny and M.S. Shephard
(1996), Surface Meshing Using Vertex Inser-
tion, Proc. 5th Int. Meshing Roundtable, Oc-
tober 10-11, Pittsburgh, PA, 243-256.

[14] M. Fortin(2000), Estimation d’erreur a
posteriori et adaptation de maillages, Revue
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Figure 2. Initial and final adapted surface meshes for
the analytical metric. Cut through the volume to show
anisotropic tetrahedra within this domain.

Figure 3. Impact of the metric intersection scheme
(initial and final solution during a period).
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Figure 4. Comparaison of the adapted solution with
a reference solution (uniform mesh) in red. Green: 6
metric intersection, blue: 2 metric intersection, ma-
genta: only the initial solution, cyan: only the final
solution.
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Figure 5. Global overview of the modified mesh adaptation scheme for transient simulations.

Figure 6. Initial and adapted meshes at the iterations 2 and 9 and corresponding isodensity distributions for the
scramjet configuration.



Figure 7. Final anisotropic mesh for the scramjet configuration.

Figure 8. Anisotropic vs. isotropic mesh comparison for the final meshes (local zoom).



Figure 9. Geometric surface mesh (left-hand side) and initial computational surface mesh (right-hand side).

Figure 10. Isodensity surfaces at times t = 0.027 sec, t = 0.05 sec, t = 0.077 sec and t = 0.1 sec.



Figure 11. Isotropic adapted surface meshes and isodensity distributions at times t = 0.027 sec, t = 0.05 sec,
t = 0.077 sec and t = 0.1 sec.

Figure 12. Isotropic adapted volume meshes and cutting plane through the domain showing the isodensity distribu-
tions at times t = 0.027 sec, t = 0.05 sec, t = 0.077 sec and t = 0.1 sec.



Figure 13. Two cutting planes through the adapted volume mesh at time t = 0.077 sec and corresponding isodensity
distributions.


